Mathematical Formulation
Mathematically the von Mises yield criterion is expressed as:
where is the yield stress of the material in pure shear. As shown later in this article, at the onset of yielding, the magnitude of the shear yield stress in pure shear is √3 times lower than the tensile yield stress in the case of simple tension. Thus, we have:
where is the yield strength of the material. If we set the von Mises stress equal to the yield strength and combine the above equations, the von Mises yield criterion and expressed as:
or
Substituting with terms of the stress tensor components
This equation defines the yield surface as a circular cylinder (See Figure) whose yield curve, or intersection with the deviatoric plane, is a circle with radius, or . This implies that the yield condition is independent of hydrostatic stresses.
Read more about this topic: Von Mises Yield Criterion
Famous quotes containing the words mathematical and/or formulation:
“What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.”
—Boris Pasternak (18901960)
“In necessary things, unity; in disputed things, liberty; in all things, charity.”
—Variously Ascribed.
The formulation was used as a motto by the English Nonconformist clergyman Richard Baxter (1615-1691)