Volume Form - Relation To Measures

Relation To Measures

See also: Density on a manifold

Given a volume form ω on an oriented manifold, the density |ω| is a volume pseudo-form on the nonoriented manifold obtained by forgetting the orientation. Densities may also be defined more generally on non-orientable manifolds.

Any volume pseudo-form ω (and therefore also any volume form) defines a measure on the Borel sets by

The difference is that while a measure can be integrated over a (Borel) subset, a volume form can only be integrated over an oriented cell. In single variable calculus, writing considers as a volume form, not simply a measure, and indicates "integrate over the cell with the opposite orientation, sometimes denoted ".

Further, general measures need not be continuous or smooth: they need not be defined by a volume form, or more formally, their Radon–Nikodym derivative with respect to a given volume form needn't be absolutely continuous.

Read more about this topic:  Volume Form

Famous quotes containing the words relation to, relation and/or measures:

    The adolescent does not develop her identity and individuality by moving outside her family. She is not triggered by some magic unconscious dynamic whereby she rejects her family in favour of her peers or of a larger society.... She continues to develop in relation to her parents. Her mother continues to have more influence over her than either her father or her friends.
    Terri Apter (20th century)

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)

    the dread

    That how we live measures our own nature,
    And at his age having no more to show
    Than one hired box should make him pretty sure
    He warranted no better,
    Philip Larkin (1922–1985)