Volume Form - Relation To Measures

Relation To Measures

See also: Density on a manifold

Given a volume form ω on an oriented manifold, the density |ω| is a volume pseudo-form on the nonoriented manifold obtained by forgetting the orientation. Densities may also be defined more generally on non-orientable manifolds.

Any volume pseudo-form ω (and therefore also any volume form) defines a measure on the Borel sets by

The difference is that while a measure can be integrated over a (Borel) subset, a volume form can only be integrated over an oriented cell. In single variable calculus, writing considers as a volume form, not simply a measure, and indicates "integrate over the cell with the opposite orientation, sometimes denoted ".

Further, general measures need not be continuous or smooth: they need not be defined by a volume form, or more formally, their Radon–Nikodym derivative with respect to a given volume form needn't be absolutely continuous.

Read more about this topic:  Volume Form

Famous quotes containing the words relation to, relation and/or measures:

    Much poetry seems to be aware of its situation in time and of its relation to the metronome, the clock, and the calendar. ... The season or month is there to be felt; the day is there to be seized. Poems beginning “When” are much more numerous than those beginning “Where” of “If.” As the meter is running, the recurrent message tapped out by the passing of measured time is mortality.
    William Harmon (b. 1938)

    The proper study of mankind is man in his relation to his deity.
    —D.H. (David Herbert)

    To the eyes of a god, mankind must appear as a species of bacteria which multiply and become progressively virulent whenever they find themselves in a congenial culture, and whose activity diminishes until they disappear completely as soon as proper measures are taken to sterilise them.
    Aleister Crowley (1875–1947)