Electromotive Force
The strength of the pile is expressed in terms of its electromotive force, or emf, given in volts. Volta characterized the emf of a pair of metals in terms of the difference in their voltages, which he could measure. His theory of contact tension considered that the emf, which drives the electric current through a circuit containing a voltaic cell, occurs at the contact between the two metals.
The emf between the ends of the pile is the number of cells multiplied by the difference of the standard electrode potential for each of the two half reactions in each cell. For the 6-cell pile illustrated above, a table of standard electrode potentials gives
- Cu2+ + 2 e− Cu with E0 = +0.34 V
- Zn2+ + 2 e− Zn with E0 = −0.76 V
giving a standard potential for the reaction of +0.34 V − (−0.76 V) = 1.10 V for each cell. Joining six cells in series results in a total potential difference of 6.60 V. As zinc has a more negative standard electrode potential than copper, it forms the anode or negative terminal, while copper forms the cathode or positive terminal.
Read more about this topic: Voltaic Pile
Famous quotes containing the word force:
“For those parents from lower-class and minority communities ... [who] have had minimal experience in negotiating dominant, external institutions or have had negative and hostile contact with social service agencies, their initial approaches to the school are often overwhelming and difficult. Not only does the school feel like an alien environment with incomprehensible norms and structures, but the families often do not feel entitled to make demands or force disagreements.”
—Sara Lawrence Lightfoot (20th century)