Voigt Profile - Properties

Properties

The Voigt profile is normalized:

 \int_{-\infty}^\infty V(x;\sigma,\gamma)\,dx = 1

since it is the convolution of normalized profiles. The Lorentzian profile has no moments (other than the zeroth) and so the moment-generating function for the Cauchy distribution is not defined. It follows that the Voigt profile will not have a moment-generating function either, but the characteristic function for the Cauchy distribution is well defined, as is the characteristic function for the normal distribution. The characteristic function for the (centered) Voigt profile will then be the product of the two:

 \varphi_f(t;\sigma,\gamma) = E(e^{ixt}) = e^{-\sigma^2t^2/2 - \gamma |t|}.

Since both the normal and the Cauchy distribution are stable distributions, they are closed under convolution and it follows that the Voigt distribution will also be closed under convolution.

Read more about this topic:  Voigt Profile

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)