Explanation
Nuclear fission reactors run on nuclear chain reactions, in which each nucleus that undergoes fission releases heat and neutrons. Each neutron may impact another nucleus and cause it to undergo fission. The speed of this neutron affects its probability of causing additional fission, as does the presence of neutron-absorbing material. In particular, slow neutrons are more easily absorbed by fissile nuclei than fast neutrons, so a neutron moderator which slows neutrons will increase the reactivity of a nuclear reactor. On the other hand, a neutron absorber will decrease the reactivity of a nuclear reactor. These two mechanisms are used to control the thermal power output of a nuclear reactor.
In order to keep a nuclear reactor intact and functioning, and to extract useful power from it, a cooling system must be used. Some reactors circulate pressurized water, some use liquid metal, such as sodium, NaK, lead, or mercury; others use gases (see advanced gas-cooled reactor). If the coolant is a liquid, it may boil if the temperature inside the reactor rises. This boiling leads to voids inside the reactor. Voids may also form if coolant is lost from the reactor in some sort of accident (called a loss of coolant accident, which has other dangers). Some reactors operate with the coolant in a constant state of boiling, using the generated vapor to turn turbines.
The coolant liquid may act as a neutron absorber or as a neutron moderator. In either case, the amount of void inside the reactor can affect the reactivity of the reactor. The change in reactivity caused by a change of voids inside the reactor is directly proportional to the void coefficient.
A positive void coefficient means that the reactivity increases as the void content inside the reactor increases due to increased boiling or loss of coolant; for example, if the coolant acts as a neutron absorber. If the void coefficient is large enough and control systems do not respond quickly enough, this can form a positive feedback loop which can quickly boil all the coolant in the reactor. This happened in the Chernobyl disaster. The construction of reactors with a positive void coefficient is illegal in the United States.
A negative void coefficient means that the reactivity decreases as the void content inside the reactor increases - but it also means that the reactivity increases if the void content inside the reactor is reduced. In boiling-water reactors with large negative void coefficients, a sudden pressure rise (caused, for example, by unplanned closure of a steamline valve) will result in a sudden decrease in void content: the increased pressure will cause some of the steam bubbles to condense ("collapse"); and the thermal output will possibly increase until it is terminated by safety systems, by increased void formation due to the higher power, or, possibly, by system or component failures that relieve pressure, causing void content to increase and power to decrease. Boiling water reactors are all designed (and required) to handle this type of transient. On the other hand, if a reactor is designed to operate with no voids at all, a large negative void coefficient may serve as a safety system. A loss of coolant in such a reactor decreases the thermal output, but of course heat that is generated is no longer removed, so the temperature could rise (if all other safety systems simultaneously failed).
Thus, too large a void coefficient of either sign can be a design issue and may require more careful, faster-acting control systems or a desired quality depending on reactor design. Gas-cooled reactors do not have issues with voids forming.
Read more about this topic: Void Coefficient
Famous quotes containing the word explanation:
“Young children constantly invent new explanations to account for complex processes. And since their inventions change from week to week, furnishing the correct explanation is not quite so important as conveying a willingness to discuss the subject. Become an askable parent.”
—Ruth Formanek (20th century)
“To develop an empiricist account of science is to depict it as involving a search for truth only about the empirical world, about what is actual and observable.... It must involve throughout a resolute rejection of the demand for an explanation of the regularities in the observable course of nature, by means of truths concerning a reality beyond what is actual and observable, as a demand which plays no role in the scientific enterprise.”
—Bas Van Fraassen (b. 1941)
“Are cans constitutionally iffy? Whenever, that is, we say that we can do something, or could do something, or could have done something, is there an if in the offingsuppressed, it may be, but due nevertheless to appear when we set out our sentence in full or when we give an explanation of its meaning?”
—J.L. (John Langshaw)