Related Problems
The art gallery problem is the problem of finding a small set of points such that all other non-obstacle points are visible from this set. Certain forms of the art gallery problem may be interpreted as finding a dominating set in a visibility graph.
The bitangents of a system of polygons or curves are lines that touch two of them without penetrating them at their points of contact. The bitangents of a set of polygons form a subset of the visibility graph that has the polygon's vertices as its nodes and the polygons themselves as the obstacles. The visibility graph approach to the Euclidean shortest path problem may be sped up by forming a graph from the bitangents instead of using all visibility edges, since a Euclidean shortest path may only enter or leave the boundary of an obstacle along a bitangent.
Read more about this topic: Visibility Graph
Famous quotes containing the words related and/or problems:
“Perhaps it is nothingness which is real and our dream which is non-existent, but then we feel think that these musical phrases, and the notions related to the dream, are nothing too. We will die, but our hostages are the divine captives who will follow our chance. And death with them is somewhat less bitter, less inglorious, perhaps less probable.”
—Marcel Proust (18711922)
“Its so easy during those first few months to think that the problems will never end. You feel as if your son will never sleep through the night, will always spit up food after eating, and will never learn to smileeven though you dont know any adults or even older children who still act this way.”
—Lawrence Kutner (20th century)