Vis Viva - History

History

Although ancient philosophers as far back as Thales of Miletus had inklings of the law of conservation of energy, it was the German Gottfried Wilhelm Leibniz during 1676–1689 who first attempted a mathematical formulation. Leibniz noticed that in many mechanical systems (of several masses, mi each with velocity vi) the quantity:

was conserved. He called this quantity the vis viva or living force of the system. The principle, it is now realised, represents an accurate statement of the conservation of kinetic energy in elastic collisions, and is a consequence of the conservation of momentum. However, many physicists at the time were unaware of this connection and, instead, were influenced by the prestige of Sir Isaac Newton in England and of René Descartes in France, both of whom had set great store by the conservation of momentum as a guiding principle. Thus the momentum:

was held by the rival camp to be the conserved vis viva. It was largely engineers such as John Smeaton, Peter Ewart, Karl Holtzmann, Gustave-Adolphe Hirn and Marc Séguin who objected that conservation of momentum alone was not adequate for practical calculation and who made use of Leibniz's principle. The principle was also championed by some chemists such as William Hyde Wollaston.

The French mathematician Émilie du Châtelet, who had a sound grasp of Newtonian mechanics, developed Leibniz' concept and, combining it with the observations of Willem 's Gravesande, showed that vis viva was dependent on the square of the velocities.

Members of the academic establishment such as John Playfair were quick to point out that kinetic energy is clearly not conserved. This is obvious to a modern analysis based on the second law of thermodynamics but in the 18th and 19th centuries, the fate of the lost energy was still unknown. Gradually it came to be suspected that the heat inevitably generated by motion was another form of vis viva. In 1783, Antoine Lavoisier and Pierre-Simon Laplace reviewed the two competing theories of vis viva and caloric theory. Count Rumford's 1798 observations of heat generation during the boring of cannons added more weight to the view that mechanical motion could be converted into heat. Vis viva now started to be known as energy, after the term was first used in that sense by Thomas Young in 1807.

The recalibration of vis viva to include the coefficient of a half, namely:

was largely the result of the work of Gaspard-Gustave Coriolis and Jean-Victor Poncelet over the period 1819–1839. The former called the quantité de travail (quantity of work) and the latter, travail mécanique (mechanical work) and both championed its use in engineering calculation.

Read more about this topic:  Vis Viva

Famous quotes containing the word history:

    American time has stretched around the world. It has become the dominant tempo of modern history, especially of the history of Europe.
    Harold Rosenberg (1906–1978)

    The principle office of history I take to be this: to prevent virtuous actions from being forgotten, and that evil words and deeds should fear an infamous reputation with posterity.
    Tacitus (c. 55–117)

    A great proportion of the inhabitants of the Cape are always thus abroad about their teaming on some ocean highway or other, and the history of one of their ordinary trips would cast the Argonautic expedition into the shade.
    Henry David Thoreau (1817–1862)