Pair Production
In order to conserve the total fermion number of the universe, a fermion cannot be created without also creating its antiparticle; thus, many physical processes lead to pair creation. The need for the normal ordering of particle fields in the vacuum can be interpreted by the idea that a pair of virtual particles may briefly "pop into existence", and then annihilate each other a short while later.
Thus, virtual particles are often popularly described as coming in pairs, a particle and antiparticle, which can be of any kind. These pairs exist for an extremely short time, and mutually annihilate in short order. In some cases, however, it is possible to boost the pair apart using external energy so that they avoid annihilation and become actual particles.
This may occur in one of two ways. In an accelerating frame of reference, the virtual particles may appear to be actual to the accelerating observer; this is known as the Unruh effect. In short, the vacuum of a stationary frame appears, to the accelerated observer, to be a warm gas of actual particles in thermodynamic equilibrium.
Another example is pair production in very strong electric fields, sometimes called vacuum decay. If, for example, a pair of atomic nuclei are merged to very briefly form a nucleus with a charge greater than about 140, (that is, larger than about the inverse of the fine structure constant, which is a dimensionless quantity), the strength of the electric field will be such that it will be energetically favorable to create positron-electron pairs out of the vacuum or Dirac sea, with the electron attracted to the nucleus to annihilate the positive charge. This pair-creation amplitude was first calculated by Julian Schwinger in 1951.
The restriction to particle–antiparticle pairs is actually only necessary if the particles in question carry a conserved quantity, such as electric charge, which is not present in the initial or final state. Otherwise, other situations can arise. For instance, the beta decay of a neutron can happen through the emission of a single virtual, negatively charged W particle that almost immediately decays into an actual electron and antineutrino; the neutron turns into a proton when it emits the W particle. The evaporation of a black hole is a process dominated by photons, which are their own antiparticles and are uncharged.
Read more about this topic: Virtual Particle
Famous quotes containing the words pair and/or production:
“I well recall my horror when I heard for the first time, of a journalist who had laid in a pair of what were then called bicycle pants and taken to golf; it was as if I had encountered a studhorse with his hair done up in frizzes, and pink bowknots peeking out of them. It seemed, in some vague way, ignominious, and even a bit indelicate.”
—H.L. (Henry Lewis)
“The production of obscurity in Paris compares to the production of motor cars in Detroit in the great period of American industry.”
—Ernest Gellner (b. 1925)