Very-large-scale Integration - Challenges

Challenges

As microprocessors become more complex due to technology scaling, microprocessor designers have encountered several challenges which force them to think beyond the design plane, and look ahead to post-silicon:

  • Power usage/Heat dissipation – As threshold voltages have ceased to scale with advancing process technology, dynamic power dissipation has not scaled proportionally. Maintaining logic complexity when scaling the design down only means that the power dissipation per area will go up. This has given rise to techniques such as dynamic voltage and frequency scaling (DVFS) to minimize overall power.
  • Process variation – As photolithography techniques tend closer to the fundamental laws of optics, achieving high accuracy in doping concentrations and etched wires is becoming more difficult and prone to errors due to variation. Designers now must simulate across multiple fabrication process corners before a chip is certified ready for production.
  • Stricter design rules – Due to lithography and etch issues with scaling, design rules for layout have become increasingly stringent. Designers must keep ever more of these rules in mind while laying out custom circuits. The overhead for custom design is now reaching a tipping point, with many design houses opting to switch to electronic design automation (EDA) tools to automate their design process.
  • Timing/design closure – As clock frequencies tend to scale up, designers are finding it more difficult to distribute and maintain low clock skew between these high frequency clocks across the entire chip. This has led to a rising interest in multicore and multiprocessor architectures, since an overall speedup can be obtained by lowering the clock frequency and distributing processing.
  • First-pass success – As die sizes shrink (due to scaling), and wafer sizes go up (to lower manufacturing costs), the number of dies per wafer increases, and the complexity of making suitable photomasks goes up rapidly. A mask set for a modern technology can cost several million dollars. This non-recurring expense deters the old iterative philosophy involving several "spin-cycles" to find errors in silicon, and encourages first-pass silicon success. Several design philosophies have been developed to aid this new design flow, including design for manufacturing (DFM), design for test (DFT), and Design for X.

Read more about this topic:  Very-large-scale Integration

Famous quotes containing the word challenges:

    The approval of the public is to be avoided like the plague. It is absolutely essential to keep the public from entering if one wishes to avoid confusion. I must add that the public must be kept panting in expectation at the gate by a system of challenges and provocations.
    André Breton (1896–1966)

    A powerful idea communicates some of its strength to him who challenges it.
    Marcel Proust (1871–1922)