Formal Definition
A vertex algebra is a vector space V, together with an identity element 1∈V, an endomorphism T: V → V, and a linear multiplication map
from the tensor product of V with itself to the space V((z)) of all formal Laurent series with coefficients in V, written as:
and satisfying the following axioms:
- (Identity) For any a ∈ V, Y(1,z)a = a = az0 and .
- (Translation) T(1) = 0, and for any a, b ∈ V,
- (Four point function) For any a, b, c ∈ V, there is an element
The multiplication map is often written as a state-field correspondence
associating an operator-valued formal distribution (called a vertex operator) to each vector. Physically, the correspondence is an insertion at the origin, and T is a generator of infinitesimal translations. The four-point axiom combines associativity and commutativity, up to singularities along . Note that the translation axiom implies Ta = a-21, so T is determined by Y.
A vertex algebra V is Z+-graded if
such that if a, b are homogeneous, then an b is homogeneous of degree deg(a)+deg(b)-n-1.
A vertex operator algebra is a Z+-graded vertex algebra equipped with a Virasoro element ω ∈ V2, such that the vertex operator
satisfies for any a ∈ Vn, the relations:
where c is a constant called the central charge, or rank of V. In particular, this gives V the structure of a representation of the Virasoro algebra.
Read more about this topic: Vertex Operator Algebra
Famous quotes containing the words formal and/or definition:
“It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between ideas and things, both of which he assumes as given; he need not inquire whether either sphere is real or whether, in the final analysis, reality consists in their interaction.”
—Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)