Types of Vertices
The degree of a vertex in a graph is the number of edges incident to it. An isolated vertex is a vertex with degree zero; that is, a vertex that is not an endpoint of any edge. A leaf vertex (also pendant vertex) is a vertex with degree one. In a directed graph, one can distinguish the outdegree (number of outgoing edges) from the indegree (number of incoming edges); a source vertex is a vertex with indegree zero, while a sink vertex is a vertex with outdegree zero.
A cut vertex is a vertex the removal of which would disconnect the remaining graph; a vertex separator is a collection of vertices the removal of which would disconnect the remaining graph into small pieces. A k-vertex-connected graph is a graph in which removing fewer than k vertices always leaves the remaining graph connected. An independent set is a set of vertices no two of which are adjacent, and a vertex cover is a set of vertices that includes the endpoint of each edge in the graph. The vertex space of a graph is a vector space having a set of basis vectors corresponding with the graph's vertices.
A graph is vertex-transitive if it has symmetries that map any vertex to any other vertex. In the context of graph enumeration and graph isomorphism it is important to distinguish between labeled vertices and unlabeled vertices. A labeled vertex is a vertex that is associated with extra information that enables it to be distinguished from other labeled vertices; two graphs can be considered isomorphic only if the correspondence between their vertices pairs up vertices with equal labels. An unlabeled vertex is one that can be substituted for any other vertex based only on its adjacencies in the graph and not based on any additional information.
Vertices in graphs are analogous to, but not the same as, vertices of polyhedra: the skeleton of a polyhedron forms a graph, the vertices of which are the vertices of the polyhedron, but polyhedron vertices have additional structure (their geometric location) that is not assumed to be present in graph theory. The vertex figure of a vertex in a polyhedron is analogous to the neighborhood of a vertex in a graph.
In a directed graph, the forward star of a vertex is defined as its outgoing edges. In a Graph with the set of vertices and the set of edges, the forward star of can be described as
Read more about this topic: Vertex (graph Theory)
Famous quotes containing the words types of and/or types:
“Our children evaluate themselves based on the opinions we have of them. When we use harsh words, biting comments, and a sarcastic tone of voice, we plant the seeds of self-doubt in their developing minds.... Children who receive a steady diet of these types of messages end up feeling powerless, inadequate, and unimportant. They start to believe that they are bad, and that they can never do enough.”
—Stephanie Martson (20th century)
“The American man is a very simple and cheap mechanism. The American woman I find a complicated and expensive one. Contrasts of feminine types are possible. I am not absolutely sure that there is more than one American man.”
—Henry Brooks Adams (18381918)