In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. The problem of finding a minimum vertex cover is a classical optimization problem in computer science and is a typical example of an NP-hard optimization problem that has an approximation algorithm. Its decision version, the vertex cover problem, was one of Karp's 21 NP-complete problems and is therefore a classical NP-complete problem in computational complexity theory. Furthermore, the vertex cover problem is fixed-parameter tractable and a central problem in parameterized complexity theory.
The minimum vertex cover problem can be formulated as a half-integral linear program whose dual linear program is the maximum matching problem.
Covering-packing dualities | |
Covering problems | Packing problems |
---|---|
Minimum set cover | Maximum set packing |
Minimum vertex cover | Maximum matching |
Minimum edge cover | Maximum independent set |
Read more about Vertex Cover: Definition, Computational Problem, Vertex Cover in Hypergraphs
Famous quotes containing the word cover:
“You may call a jay a bird. Well, so he is, in a measurebecause hes got feathers on him, and dont belong to no church, perhaps; but otherwise he is just as much a human as you be. And Ill tell you for why. A jays gifts and instincts, and feelings, and interests, cover the whole ground. A jay hasnt got any more principle than a Congressman.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)