In the mathematical field of graph theory, a vertex-transitive graph is a graph G such that, given any two vertices v1 and v2 of G, there is some automorphism
such that
In other words, a graph is vertex-transitive if its automorphism group acts transitively upon its vertices. A graph is vertex-transitive if and only if its graph complement is, since the group actions are identical.
Every symmetric graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph and Tietze's graph).
Read more about Vertex-transitive Graph: Finite Examples, Properties, Infinite Examples
Famous quotes containing the word graph:
“When producers want to know what the public wants, they graph it as curves. When they want to tell the public what to get, they say it in curves.”
—Marshall McLuhan (19111980)