Definition of Verma Modules
The definition relies on a stack of relatively dense notation. Let be a field and denote the following:
- , a semisimple Lie algebra over, with universal enveloping algebra .
- , a Borel subalgebra of, with universal enveloping algebra .
- , a Cartan subalgebra of . We do not consider its universal enveloping algebra.
- , a fixed weight.
To define the Verma module, we begin by defining some other modules:
- , the one-dimensional -vector space (i.e. whose underlying set is itself) together with a -module structure such that acts as multiplication by and the positive root spaces act trivially. As is a left -module, it is consequently a left -module.
- Using the Poincaré-Birkhoff-Witt theorem, there is a natural right -module structure on by right multiplication of a subalgebra. is naturally a left -module, and together with this structure, it is a -bimodule.
Now we can define the Verma module (with respect to ) as
which is naturally a left -module (i.e. an infinite-dimensional representation of ). The Poincaré-Birkhoff-Witt theorem implies that the underlying vector space of is isomorphic to
where is the Lie subalgebra generated by the negative root spaces of .
Read more about this topic: Verma Module
Famous quotes containing the words definition of and/or definition:
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)