Error Terms
The local error in position of the Verlet integrator is as described above, and the local error in velocity is .
The global error in position, in contrast, is and the global error in velocity is . These can be derived by noting the following:
and
Therefore:
Similarly:
Which can be generalized to (it can be shown by induction, but it is given here without proof):
If we consider the global error in position between and, where, it is clear that:
And therefore, the global (cumulative) error over a constant interval of time is given by:
Because the velocity is determined in a non-cumulative way from the positions in the Verlet integrator, the global error in velocity is also .
In molecular dynamics simulations, the global error is typically far more important than the local error, and the Verlet integrator is therefore known as a second-order integrator.
Read more about this topic: Verlet Integration
Famous quotes containing the words error and/or terms:
“Truth is the kind of error without which a certain species of life could not live. The value for life is ultimately decisive.”
—Friedrich Nietzsche (18441900)
“The nineteenth century was completely lacking in logic, it had cosmic terms and hopes, and aspirations, and discoveries, and ideals but it had no logic.”
—Gertrude Stein (18741946)