Verlet Integration - Constraints

Constraints

The most notable thing that is now easier due to using Verlet integration rather than Eulerian is that constraints between particles are very easy to do. A constraint is a connection between multiple points that limits them in some way, perhaps setting them at a specific distance or keeping them apart, or making sure they are closer than a specific distance. Often physics systems use springs between the points in order to keep them in the locations they are supposed to be. However, using springs of infinite stiffness between two points usually gives the best results coupled with the verlet algorithm. Here's how:

The variables are the positions of the points i at time t, the are the unconstrained positions (i.e. the point positions before applying the constraints) of the points i at time t, the d variables are temporary (they are added for optimization as the results of their expressions are needed multiple times), and r is the distance that is supposed to be between the two points. Currently this is in one dimension; however, it is easily expanded to two or three. Simply find the delta (first equation) of each dimension, and then add the deltas squared to the inside of the square root of the second equation (Pythagorean theorem). Then, duplicate the last two equations for the number of dimensions there are. This is where verlet makes constraints simple – instead of say, applying a velocity to the points that would eventually satisfy the constraint, you can simply position the point where it should be and the verlet integrator takes care of the rest.

Problems, however, arise when multiple constraints position a vertex. One way to solve this is to loop through all the vertices in a simulation in a criss cross manner, so that at every vertex the constraint relaxation of the last vertex is already used to speed up the spread of the information. Either use fine time steps for the simulation, use a fixed number of constraint solving steps per time step, or solve constrains until they are met by a specific deviation.

When approximating the constraints locally to first order this is the same as the Gauss–Seidel method. For small matrices it is known that LU decomposition is faster. Large systems can be divided into clusters (for example: each ragdoll = cluster). Inside clusters the LU method is used, between clusters the Gauss–Seidel method is used. The matrix code can be reused: The dependency of the forces on the positions can be approximated locally to first order, and the verlet integration can be made more implicit.

For big matrices sophisticated solvers (look especially for "The sizes of these small dense matrices can be tuned to match the sweet spot" in ) for sparse matrices exist, any self made Verlet integration has to compete with these. The usage of (clusters of) matrices is not generally more precise or stable, but addresses the specific problem, that a force on one vertex of a sheet of cloth should reach any other vertex in a low number of time steps even if a fine grid is used for the cloth (link needs refinement) and not form a sound wave.

Another way to solve holonomic constraints is to use constraint algorithms.

Read more about this topic:  Verlet Integration

Famous quotes containing the word constraints:

    Play is a major avenue for learning to manage anxiety. It gives the child a safe space where she can experiment at will, suspending the rules and constraints of physical and social reality. In play, the child becomes master rather than subject.... Play allows the child to transcend passivity and to become the active doer of what happens around her.
    Alicia F. Lieberman (20th century)

    The analogy between the mind and a computer fails for many reasons. The brain is constructed by principles that assure diversity and degeneracy. Unlike a computer, it has no replicative memory. It is historical and value driven. It forms categories by internal criteria and by constraints acting at many scales, not by means of a syntactically constructed program. The world with which the brain interacts is not unequivocally made up of classical categories.
    Gerald M. Edelman (b. 1928)