Vector Fields On Spheres

In mathematics, the discussion of vector fields on spheres was a classical problem of differential topology, beginning with the hairy ball theorem, and early work on the classification of division algebras.

Specifically, the question is how many linearly independent vector fields can be constructed on a sphere in N-dimensional Euclidean space. A definitive answer was made in 1962 by Frank Adams. It was already known, by direct construction using Clifford algebras, that there were at least ρ(N) such fields (see definition below). Adams applied homotopy theory to prove that no more independent vector fields could be found.

Read more about Vector Fields On Spheres:  Technical Details, Radon–Hurwitz Numbers

Famous quotes containing the words fields and/or spheres:

    Most books belong to the house and street only, and in the fields their leaves feel very thin. They are bare and obvious, and have no halo nor haze about them. Nature lies far and fair behind them all. But this, as it proceeds from, so it addresses, what is deepest and most abiding in man. It belongs to the noontide of the day, the midsummer of the year, and after the snows have melted, and the waters evaporated in the spring, still its truth speaks freshly to our experience.
    Henry David Thoreau (1817–1862)

    Perhaps a modern society can remain stable only by eliminating adolescence, by giving its young, from the age of ten, the skills, responsibilities, and rewards of grownups, and opportunities for action in all spheres of life. Adolescence should be a time of useful action, while book learning and scholarship should be a preoccupation of adults.
    Eric Hoffer (1902–1983)