An important case of vector-valued differential forms are Lie algebra-valued forms. These are -valued forms where is a Lie algebra. Such forms have important applications in the theory of connections on a principal bundle as well as in the theory of Cartan connections.
Since every Lie algebra has a bilinear Lie bracket operation, the wedge product of two Lie algebra-valued forms can be composed with the bracket operation to obtain another Lie algebra-valued form. This operation is denoted by to indicate both operations involved, or often just . For example, if and are Lie algebra-valued one forms, then one has
With this operation the set of all Lie algebra-valued forms on a manifold M becomes a graded Lie superalgebra.
The operation can also be defined as the bilinear operation on satisfying by the formula
for all and .
The alternative notation, which resembles a commutator, is justified by the fact that if the Lie algebra is a matrix algebra then is nothing but the graded commutator of and, i. e. if and then
where are wedge products formed using the matrix multiplication on .
Read more about this topic: Vector-valued Differential Form
Famous quotes containing the words lie and/or forms:
“No head knows where its rest is
Or may lie down with reason
When wars usurping claws
Shall take heart escheat....”
—Allen Tate (18991979)
“We can imagine a society in which no one could survive as a social being because it does not correspond to biologically determined perceptions and human social needs. For historical reasons, existing societies might have such properties, leading to various forms of pathology.”
—Noam Chomsky (b. 1928)