Variational Inequality - Definition

Definition

Following Antman (1983, p. 283), the formal definition of a variational inequality is the following one.

Definition 1. Given a Banach space , a subset of , and a functional from to the dual space of the space , the variational inequality problem is the problem of solving respect to the variable belonging to the following inequality:

where is the duality pairing.

In general, the variational inequality problem can be formulated on any finite – or infinite-dimensional Banach space. The three obvious steps in the study of the problem are the following ones:

  1. Prove the existence of a solution: this step implies the mathematical correctness of the problem, showing that there is at least a solution.
  2. Prove the uniqueness of the given solution: this step implies the physical correctness of the problem, showing that the solution can be used to represent a physical phenomenon. It is a particularly important step since most of the problems modeled by variational inequalities are of physical origin.
  3. Find the solution.

Read more about this topic:  Variational Inequality

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)