Vandermonde's Identity - Generalized Vandermonde's Identity

Generalized Vandermonde's Identity

If in the algebraic derivation above more than two polynomials are used, it results in the generalized Vandermonde's identity. For y + 1 polynomials:


\sum_{k_1+\dots +k_y = 0}^x {n\choose k_1} {n\choose k_2} {n\choose k_3} \cdots {n \choose x - \sum_{j = 1}^y k_j } = { \left( y + 1 \right) n \choose x}.

Read more about this topic:  Vandermonde's Identity

Famous quotes containing the words generalized and/or identity:

    One is conscious of no brave and noble earnestness in it, of no generalized passion for intellectual and spiritual adventure, of no organized determination to think things out. What is there is a highly self-conscious and insipid correctness, a bloodless respectability submergence of matter in manner—in brief, what is there is the feeble, uninspiring quality of German painting and English music.
    —H.L. (Henry Lewis)

    Though your views are in straight antagonism to theirs, assume an identity of sentiment, assume that you are saying precisely that which all think, and in the flow of wit and love roll out your paradoxes in solid column, with not the infirmity of a doubt.
    Ralph Waldo Emerson (1803–1882)