Van Der Waals Equation - Reduced Form

Reduced Form

Although the material constants a and b in the usual form of the van der Waals equation differs for every single fluid considered, the equation can be recast into an invariant form applicable to all fluids.

Defining the following reduced variables (fR, fC is the reduced and critical variables version of f, respectively),

p_R=\frac{p}{p_C},\qquad
v_R=\frac{v}{v_C},\quad\hbox{and}\quad
T_R=\frac{T}{T_C},

where


p_C=\frac{a'}{27b'^2}, \qquad \displaystyle{v_C=3b'},\quad\hbox{and}\quad kT_C=\frac{8a'}{27b'}

as shown by Salzman.

The first form of the van der Waals equation of state given above can be recast in the following reduced form:

This equation is invariant for all fluids; that is, the same reduced form equation of state applies, no matter what a and b may be for the particular fluid.

This invariance may also be understood in terms of the principle of corresponding states. If two fluids have the same reduced pressure, reduced volume, and reduced temperature, we say that their states are corresponding. The states of two fluids may be corresponding even if their measured pressure, volume, and temperature are very different. If the two fluids' states are corresponding, they exist in the same regime of the reduced form equation of state. Therefore, they will respond to changes in roughly the same way, even though their measurable physical characteristics may differ significantly.

Read more about this topic:  Van Der Waals Equation

Famous quotes containing the words reduced and/or form:

    There surely is a being who presides over the universe; and who, with infinite wisdom and power, has reduced the jarring elements into just order and proportion. Let speculative reasoners dispute, how far this beneficent being extends his care, and whether he prolongs our existence beyond the grave, in order to bestow on virtue its just reward, and render it fully triumphant.
    David Hume (1711–1776)

    When the delicious beauty of lineaments loses its power, it is because a more delicious beauty has appeared; that an interior and durable form has been disclosed.
    Ralph Waldo Emerson (1803–1882)