Flux Values
In the belts, at a given point, the flux of particles of a given energy decreases sharply with energy.
At the magnetic equator, electrons of energies exceeding 500 keV (resp. 5 MeV) have omnidirectional fluxes ranging from 1.2×106 (resp. 3.7×104) up to 9.4×109 (resp. 2×107) particles per square centimeter per second.
The proton belts contain protons with kinetic energies ranging from about 100 keV (which can penetrate 0.6 µm of lead) to over 400 MeV (which can penetrate 143 mm of lead).
Most published flux values for the inner and outer belts may not show the maximum probable flux densities that are possible in the belts. There is a reason for this discrepancy: the flux density and the location of the peak flux is variable (depending primarily on solar activity), and the number of spacecraft with instruments observing the belt in real time has been limited. The Earth has not experienced a solar storm of Carrington event intensity and duration while spacecraft with the proper instruments have been available to observe the event.
Regardless of the differences of the flux levels in the Inner and Outer Van Allen belts, the beta radiation levels would be dangerous to humans if they were exposed for an extended period of time.
- Flux values, normal solar conditions
-
AP8 MIN omnidirectional proton flux >=100keV
-
AP8 MIN omnidirectional proton flux >=1MeV
-
AP8 MIN omnidirectional proton flux >=400MeV
Read more about this topic: Van Allen Radiation Belt
Famous quotes containing the words flux and/or values:
“No civilization ... would ever have been possible without a framework of stability, to provide the wherein for the flux of change. Foremost among the stabilizing factors, more enduring than customs, manners and traditions, are the legal systems that regulate our life in the world and our daily affairs with each other.”
—Hannah Arendt (19061975)
“Our culture is ill-equipped to assert the bourgeois values which would be the salvation of the under-class, because we have lost those values ourselves.”
—Norman Podhoretz (b. 1930)