Formal Statement
Two disjoint closed subsets A and B of a topological space X are said to be separated by neighbourhoods if there are neighbourhoods U of A and V of B that are also disjoint. A and B are said to be separated by a function if there exists a continuous function f from X into the unit interval such that f(a) = 0 for all a in A and f(b) = 1 for all b in B. Any such function is called a Urysohn function for A and B.
A normal space is a topological space in which any two disjoint closed sets can be separated by neighbourhoods. Urysohn's lemma states that a topological space is normal if and only if any two disjoint closed sets can be separated by a continuous function.
The sets A and B need not be precisely separated by f, i.e., we do not, and in general cannot, require that f(x) ≠ 0 and ≠ 1 for x outside of A and B. This is possible only in perfectly normal spaces.
Urysohn's lemma has led to the formulation of other topological properties such as the 'Tychonoff property' and 'completely Hausdorff spaces'. For example, a corollary of the lemma is that normal T1 spaces are Tychonoff.
Read more about this topic: Urysohn's Lemma
Famous quotes containing the words formal and/or statement:
“There must be a profound recognition that parents are the first teachers and that education begins before formal schooling and is deeply rooted in the values, traditions, and norms of family and culture.”
—Sara Lawrence Lightfoot (20th century)
“Eroticism has its own moral justification because it says that pleasure is enough for me; it is a statement of the individuals sovereignty.”
—Mario Vargas Llosa (b. 1936)