Basic Urn Model
In this basic urn model in probability theory, the urn contains x white and y black balls, well-mixed together. One ball is drawn randomly from the urn and its color observed; it is then placed back in the urn (or not), and the selection process is repeated.
Possible questions that can be answered in this model are:
- Can I infer the proportion of white and black balls from n observations? With what degree of confidence?
- Knowing x and y, what is the probability of drawing a specific sequence (e.g. one white followed by one black)?
- If I only observe n white balls, how sure can I be that there are no black balls? (A variation on the first question)
Read more about this topic: Urn Problem
Famous quotes containing the words basic and/or model:
“The gay world that flourished in the half-century between 1890 and the beginning of the Second World War, a highly visible, remarkably complex, and continually changing gay male world, took shape in New York City.... It is not supposed to have existed.”
—George Chauncey, U.S. educator, author. Gay New York: Gender, Urban Culture, and the Making of the Gay Male World, 1890-1940, p. 1, Basic Books (1994)
“Your home is regarded as a model home, your life as a model life. But all this splendor, and you along with it ... its just as though it were built upon a shifting quagmire. A moment may come, a word can be spoken, and both you and all this splendor will collapse.”
—Henrik Ibsen (18281906)