Uric Acid - Biology

Biology

The enzyme xanthine oxidase makes uric acid from xanthine and hypoxanthine, which in turn are produced from other purines. Xanthine oxidase is a large enzyme whose active site consists of the metal, molybdenum, bound to sulfur and oxygen. Within cells, xanthine oxidase can exist as xanthine dehydrogenase and xanthine oxireductase, which has also been purified from bovine milk and spleen extracts. Uric acid is released in hypoxic conditions.

In humans and higher primates, uric acid is the final oxidation (breakdown) product of purine metabolism and is excreted in urine. In most other mammals, the enzyme uricase further oxidizes uric acid to allantoin. The loss of uricase in higher primates parallels the similar loss of the ability to synthesize ascorbic acid, leading to the suggestion that urate may partially substitute for ascorbate in such species. Both uric acid and ascorbic acid are strong reducing agents (electron donors) and potent antioxidants. In humans, over half the antioxidant capacity of blood plasma comes from uric acid. The Dalmatian dog has a genetic defect in uric acid uptake by the liver and kidneys, resulting in decreased conversion to allantoin, so this breed excretes uric acid, and not allantoin, in the urine.

In birds and reptiles, and in some desert dwelling mammals (e.g., the kangaroo rat), uric acid also is the end product of purine metabolism, but it is excreted in feces as a dry mass. This involves a complex metabolic pathway that is energetically costly in comparison to processing of other nitrogenous wastes such as urea (from urea cycle) or ammonia, but has the advantage of reducing water loss.

In humans, about 70% of daily uric acid disposal occurs via the kidneys, and in 5-25% of humans, impaired renal (kidney) excretion leads to hyperuricemia.

Read more about this topic:  Uric Acid

Famous quotes containing the word biology:

    The “control of nature” is a phrase conceived in arrogance, born of the Neanderthal age of biology and the convenience of man.
    Rachel Carson (1907–1964)

    Nothing can be more incorrect than the assumption one sometimes meets with, that physics has one method, chemistry another, and biology a third.
    Thomas Henry Huxley (1825–95)