Unusual Number

In number theory, an unusual number is a natural number n whose largest prime factor is strictly greater than (sequence A064052 in OEIS). All prime numbers are unusual.

A k-smooth number has all its prime factors less than or equal to k, therefore, an unusual number is non--smooth.

The first few unusual numbers are 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67....

The first few non-prime unusual numbers are 6, 10, 14, 15, 20, 21, 22, 26, 28, 33, 34, 35, 38, 39, 42, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102....

If we denote the number of unusual numbers less than or equal to n by u(n) then u(n) behaves as follows:

n u(n) u(n) / n
10 6 0.6
100 67 0.67
1000 715 0.715
10000 7319 0.7319
100000 70128 0.70128

Richard Schroeppel proved in 1972 that the asymptotic probability that a randomly chosen number is unusual is ln(2). In other words:

Famous quotes containing the words unusual and/or number:

    The green trees when I saw them first through one of the gates transported and ravished me, their sweetness and unusual beauty made my heart to leap, and almost mad with ecstasy, they were such strange and wonderful things.
    Thomas Traherne (1636–1674)

    Computers are good at swift, accurate computation and at storing great masses of information. The brain, on the other hand, is not as efficient a number cruncher and its memory is often highly fallible; a basic inexactness is built into its design. The brain’s strong point is its flexibility. It is unsurpassed at making shrewd guesses and at grasping the total meaning of information presented to it.
    Jeremy Campbell (b. 1931)