Universe (mathematics) - in Set Theory

In Set Theory

It is possible to give a precise meaning to the claim that SN is the universe of ordinary mathematics; it is a model of Zermelo set theory, the axiomatic set theory originally developed by Ernst Zermelo in 1908. Zermelo set theory was successful precisely because it was capable of axiomatising "ordinary" mathematics, fulfilling the programme begun by Cantor over 30 years earlier. But Zermelo set theory proved insufficient for the further development of axiomatic set theory and other work in the foundations of mathematics, especially model theory. For a dramatic example, the description of the superstructure process above cannot itself be carried out in Zermelo set theory! The final step, forming S as an infinitary union, requires the axiom of replacement, which was added to Zermelo set theory in 1922 to form Zermelo–Fraenkel set theory, the set of axioms most widely accepted today. So while ordinary mathematics may be done in SN, discussion of SN goes beyond the "ordinary", into metamathematics.

But if high-powered set theory is brought in, the superstructure process above reveals itself to be merely the beginning of a transfinite recursion. Going back to X = {}, the empty set, and introducing the (standard) notation Vi for Si{}, V0 = {}, V1 = P{}, and so on as before. But what used to be called "superstructure" is now just the next item on the list: Vω, where ω is the first infinite ordinal number. This can be extended to arbitrary ordinal numbers:

defines Vi for any ordinal number i. The union of all of the Vi is the von Neumann universe V:

.

Note that every individual Vi is a set, but their union V is a proper class. The axiom of foundation, which was added to ZF set theory at around the same time as the axiom of replacement, says that every set belongs to V.

Kurt Gödel's constructible universe L and the axiom of constructibility
Inaccessible cardinals yield models of ZF and sometimes additional axioms, and are equivalent to the existence of the Grothendieck universe set

Read more about this topic:  Universe (mathematics)

Famous quotes containing the words set and/or theory:

    But whatever happens, wherever the scene is laid, somebody, somewhere, will quietly set out—somebody has already set out, somebody still rather far away is buying a ticket, is boarding a bus, a ship, a plane, has landed, is walking toward a million photographers, and presently he will ring at my door—a bigger, more respectable, more competent Gradus.
    Vladimir Nabokov (1899–1977)

    There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.
    —A.J. (Alfred Jules)