In Set Theory
It is possible to give a precise meaning to the claim that SN is the universe of ordinary mathematics; it is a model of Zermelo set theory, the axiomatic set theory originally developed by Ernst Zermelo in 1908. Zermelo set theory was successful precisely because it was capable of axiomatising "ordinary" mathematics, fulfilling the programme begun by Cantor over 30 years earlier. But Zermelo set theory proved insufficient for the further development of axiomatic set theory and other work in the foundations of mathematics, especially model theory. For a dramatic example, the description of the superstructure process above cannot itself be carried out in Zermelo set theory! The final step, forming S as an infinitary union, requires the axiom of replacement, which was added to Zermelo set theory in 1922 to form Zermelo–Fraenkel set theory, the set of axioms most widely accepted today. So while ordinary mathematics may be done in SN, discussion of SN goes beyond the "ordinary", into metamathematics.
But if high-powered set theory is brought in, the superstructure process above reveals itself to be merely the beginning of a transfinite recursion. Going back to X = {}, the empty set, and introducing the (standard) notation Vi for Si{}, V0 = {}, V1 = P{}, and so on as before. But what used to be called "superstructure" is now just the next item on the list: Vω, where ω is the first infinite ordinal number. This can be extended to arbitrary ordinal numbers:
defines Vi for any ordinal number i. The union of all of the Vi is the von Neumann universe V:
- .
Note that every individual Vi is a set, but their union V is a proper class. The axiom of foundation, which was added to ZF set theory at around the same time as the axiom of replacement, says that every set belongs to V.
- Kurt Gödel's constructible universe L and the axiom of constructibility
- Inaccessible cardinals yield models of ZF and sometimes additional axioms, and are equivalent to the existence of the Grothendieck universe set
Read more about this topic: Universe (mathematics)
Famous quotes containing the words set and/or theory:
“If the technology cannot shoulder the entire burden of strategic change, it nevertheless can set into motion a series of dynamics that present an important challenge to imperative control and the industrial division of labor. The more blurred the distinction between what workers know and what managers know, the more fragile and pointless any traditional relationships of domination and subordination between them will become.”
—Shoshana Zuboff (b. 1951)
“... the first reason for psychologys failure to understand what people are and how they act, is that clinicians and psychiatrists, who are generally the theoreticians on these matters, have essentially made up myths without any evidence to support them; the second reason for psychologys failure is that personality theory has looked for inner traits when it should have been looking for social context.”
—Naomi Weisstein (b. 1939)