In Category Theory
There is another approach to universes which is historically connected with category theory. This is the idea of a Grothendieck universe. Roughly speaking, a Grothendieck universe is a set inside which all the usual operations of set theory can be performed. For example, the union of any two sets in a Grothendieck universe U is still in U. Similarly, intersections, unordered pairs, power sets, and so on are also in U. This is similar to the idea of a superstructure above. The advantage of a Grothendieck universe is that it is actually a set, and never a proper class. The disadvantage is that if one tries hard enough, one can leave a Grothendieck universe.
The most common use of a Grothendieck universe U is to take U as a replacement for the category of all sets. One says that a set S is U-small if S ∈U, and U-large otherwise. The category U-Set of all U-small sets has as objects all U-small sets and as morphisms all functions between these sets. Both the object set and the morphism set are sets, so it becomes possible to discuss the category of "all" sets without invoking proper classes. Then it becomes possible to define other categories in terms of this new category. For example, the category of all U-small categories is the category of all categories whose object set and whose morphism set are in U. Then the usual arguments of set theory are applicable to the category of all categories, and one does not have to worry about accidentally talking about proper classes. Because Grothendieck universes are extremely large, this suffices in almost all applications.
Often when working with Grothendieck universes, mathematicians assume the Axiom of Universes: "For any set x, there exists a universe U such that x ∈U." The point of this axiom is that any set one encounters is then U-small for some U, so any argument done in a general Grothendieck universe can be applied. This axiom is closely related to the existence of strongly inaccessible cardinals.
- Set-like toposes
Read more about this topic: Universe (mathematics)
Famous quotes containing the words category and/or theory:
“Despair is typical of those who do not understand the causes of evil, see no way out, and are incapable of struggle. The modern industrial proletariat does not belong to the category of such classes.”
—Vladimir Ilyich Lenin (18701924)
“The human species, according to the best theory I can form of it, is composed of two distinct races, the men who borrow and the men who lend.”
—Charles Lamb (17751834)