A universal probability bound is a probabilistic threshold whose existence is asserted by William A. Dembski and is used by him in his works promoting intelligent design. It is defined as "A degree of improbability below which a specified event of that probability cannot reasonably be attributed to chance regardless of whatever probabilitistic resources from the known universe are factored in."
Dembski asserts that one can effectively estimate a positive value which is a universal probability bound. The existence of such a bound would imply that the occurrence of certain kinds of random events whose probability lies below this value can be rejected, given the resources available in the entire history of the universe. Contrapositively, Dembski uses the threshold to argue that the occurrence of certain events cannot be attributed to chance alone. Universal probability bound is then used to argue against random evolution. However evolution is not based on random events only (genetic drift), but also on natural selection.
The idea that events with fantastically small, but positive probabilities, are effectively negligible was discussed by the French mathematician Émile Borel primarily in the context of cosmology and statistical mechanics. However, there is no widely accepted scientific basis for claiming that certain positive values are universal cutoff points for effective negligibility of events. Borel, in particular, was careful to point out that negligibility was relative to a model of probability for a specific physical system.
Dembski appeals to cryptographic practice in support of the concept of the universal probability bound, noting that cryptographers have sometimes compared the security of encryption algorithms against brute force attacks by the likelihood of success of an adversary utilizing computational resources bounded by very large physical constraints. An example of such a constraint might be obtained for example, by assuming that every atom in the known universe is a computer of a certain type and these computers are running through and testing every possible key. However, universal measures of security are used much less frequently than asymptotic ones. The fact that a keyspace is very large is useless if the cryptographic algorithm used has vulnerabilities which make it susceptible to other kinds of attacks.
Read more about Universal Probability Bound: Dembski's Estimate
Famous quotes containing the words universal, probability and/or bound:
“I would suggest that barbarism be considered as a permanent and universal human characteristic which becomes more or less pronounced according to the play of circumstances.”
—Simone Weil (19101943)
“The probability of learning something unusual from a newspaper is far greater than that of experiencing it; in other words, it is in the realm of the abstract that the more important things happen in these times, and it is the unimportant that happens in real life.”
—Robert Musil (18801942)
“The only way to spend New Years Eve is either quietly with friends or in a brothel. Otherwise when the evening ends and people pair off, someone is bound to be left in tears.”
—W.H. (Wystan Hugh)