Universal Enveloping Algebra - Universal Property

Universal Property

Let X be any Lie algebra over K. Given a unital associative K-algebra U and a Lie algebra homomorphism: h: XUL, (notation as above) we say that U is the universal enveloping algebra of X if it satisfies the following universal property: for any unital associative K-algebra A and Lie algebra homomorphism f: XAL there exists a unique unital algebra homomorphism g: UA such that: f(-) = gL (h(-)).

This is the universal property expressing that the functor sending X to its universal enveloping algebra is left adjoint to the functor sending a unital associative algebra A to its Lie algebra AL.

Read more about this topic:  Universal Enveloping Algebra

Famous quotes containing the words universal and/or property:

    We early arrive at the great discovery that there is one mind common to all individual men: that what is individual is less than what is universal ... that error, vice and disease have their seat in the superficial or individual nature.
    Ralph Waldo Emerson (1803–1882)

    The charming landscape which I saw this morning is indubitably made up of some twenty or thirty farms. Miller owns this field, Locke that, and Manning the woodland beyond. But none of them owns the landscape. There is property in the horizon which no man has but he whose eye can integrate all parts, that is, the poet. This is the best part of these men’s farms, yet to this their warranty-deeds give no title.
    Ralph Waldo Emerson (1803–1882)