Example: mod 2 Cohomology of The Real Projective Space
Let X = Pn(R), the real projective space. We compute the singular cohomology of X with coefficients in R := Z2.
Knowing that the integer homology is given by:
We have Ext(R, R) = R, Ext(Z, R)= 0, so that the above exact sequences yield
- .
In fact the total cohomology ring structure is
- .
Read more about this topic: Universal Coefficient Theorem
Famous quotes containing the words real and/or space:
“We are beginning a new era in our government. I cannot too strongly urge the necessity of a rigid economy and an inflexible determination not to enlarge the income beyond the real necessities of the government.”
—Andrew Jackson (17671845)
“Even the most subjected person has moments of rage and resentment so intense that they respond, they act against. There is an inner uprising that leads to rebellion, however short- lived. It may be only momentary but it takes place. That space within oneself where resistance is possible remains.”
—bell hooks (b. c. 1955)