Relationship To Practical Compression
Huffman coding and arithmetic encoding (when they can be used) give at least as good, and often better compression than any universal code.
However, universal codes are useful when Huffman coding cannot be used — for example, when one does not know the exact probability of each message, but only knows the rankings of their probabilities.
Universal codes are also useful when Huffman codes are inconvenient. For example, when the transmitter but not the receiver knows the probabilities of the messages, Huffman coding requires an overhead of transmitting those probabilities to the receiver. Using a universal code does not have that overhead.
Each universal code, like each other self-delimiting (prefix) binary code, has its own "implied probability distribution" given by p(i)=2-l(i) where l(i) is the length of the ith codeword and p(i) is the corresponding symbol's probability. If the actual message probabilities are q(i) and Kullback–Leibler divergence DKL(q||p) is minimized by the code with l(i), then the optimal Huffman code for that set of messages will be equivalent to that code. Likewise, how close a code is to optimal can be measured by this divergence. Since universal codes are simpler and faster to encode and decode than Huffman codes (which is, in turn, simpler and faster than arithmetic encoding), the universal code would be preferable in cases where DKL(q||p) is sufficiently small.
For any geometric distribution (an exponential distribution on integers), a Golomb code is optimal. With universal codes, the implicit distribution is approximately a power law such as (more precisely, a Zipf distribution). For the Fibonacci code, the implicit distribution is approximately, with
where is the golden ratio. For the ternary comma code (i.e., encoding in base 3, represented with 2 bits per symbol), the implicit distribution is a power law with . These distributions thus have near-optimal codes with their respective power laws.
Read more about this topic: Universal Code (data Compression)
Famous quotes containing the words relationship to, relationship, practical and/or compression:
“Whatever may be our just grievances in the southern states, it is fitting that we acknowledge that, considering their poverty and past relationship to the Negro race, they have done remarkably well for the cause of education among us. That the whole South should commit itself to the principle that the colored people have a right to be educated is an immense acquisition to the cause of popular education.”
—Fannie Barrier Williams (18551944)
“Artists have a double relationship towards nature: they are her master and her slave at the same time. They are her slave in so far as they must work with means of this world so as to be understood; her master in so far as they subject these means to their higher goals and make them subservient to them.”
—Johann Wolfgang Von Goethe (17491832)
“No delusion is greater than the notion that method and industry can make up for lack of mother-wit, either in science or in practical life.”
—Thomas Henry Huxley (182595)
“Do they [the publishers of Murphy] not understand that if the book is slightly obscure it is because it is a compression and that to compress it further can only make it more obscure?”
—Samuel Beckett (19061989)