Because energy is defined via work, the SI unit for energy is the same as the unit of work – the joule (J), named in honour of James Prescott Joule and his experiments on the mechanical equivalent of heat. In slightly more fundamental terms, 1 joule is equal to 1 newton-metre and, in terms of SI base units:
An energy unit that is used in atomic physics, particle physics and high energy physics is the electronvolt (eV). One eV is equivalent to 1.60217653×10−19 J. In spectroscopy the unit cm−1 = 0.000123986 eV is used to represent energy since energy is inversely proportional to wavelength from the equation .
In discussions of energy production and consumption, the units barrel of oil equivalent and ton of oil equivalent are often used.
When discussing amounts of energy released in explosions or bolide impact events, the TNT equivalent unit is often used. 1 ton of TNT equivalent is equal to 4.2 × 109 joules. Therefore, 1 kt TNT is 4.2 × 1012 joules, and 1 Mt TNT is 4.2 × 1015 joules.
Note that torque, the "rotational force" or "angular force" which causes a change in rotational motion is typically expressed in newton-metres. This is not a simple coincidence: a torque of 1 newton-metre applied on 1 radian requires exactly 1 newton-metre = 1 joule of energy.
Famous quotes containing the words units and/or energy:
“Even in harmonious families there is this double life: the group life, which is the one we can observe in our neighbours household, and, underneath, anothersecret and passionate and intensewhich is the real life that stamps the faces and gives character to the voices of our friends. Always in his mind each member of these social units is escaping, running away, trying to break the net which circumstances and his own affections have woven about him.”
—Willa Cather (18731947)
“I have witnessed the tremendous energy of the masses. On this foundation it is possible to accomplish any task whatsoever.”
—Mao Zedong (18931976)