Unitary Perfect Number

A unitary perfect number is an integer which is the sum of its positive proper unitary divisors, not including the number itself. (A divisor d of a number n is a unitary divisor if d and n/d share no common factors.) Some perfect numbers are not unitary perfect numbers, and some unitary perfect numbers are not regular perfect numbers.

Thus, 60 is a unitary perfect number, because its unitary divisors, 1, 3, 4, 5, 12, 15 and 20 are its proper unitary divisors, and 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60. The first few unitary perfect numbers are:

6, 60, 90, 87360, 146361946186458562560000 (sequence A002827 in OEIS)

There are no odd unitary perfect numbers. This follows since one has 2d*(n) dividing the sum of the unitary divisors of an odd number (where d*(n) is the number of distinct prime divisors of n). One gets this because the sum of all the unitary divisors is a multiplicative function and one has the sum of the unitary divisors of a power of a prime pa is pa + 1 which is even for all odd primes p. Therefore, an odd unitary perfect number must have only one distinct prime factor, and it is not hard to show that a power of prime cannot be a unitary perfect number, since there are not enough divisors. It's not known whether or not there are infinitely many unitary perfect numbers.

Famous quotes containing the words perfect and/or number:

    This is not to say that becoming a father automatically makes you a good father. Fatherhood, like marriage, is a constant struggle against your limitations and self-interests. But the urge to be a perfect father is there, because your child is a perfect gift.
    Kent Nerburn (20th century)

    Again, the great number of cultivated men keep each other up to a high standard. The habit of meeting well-read and knowing men teaches the art of omission and selection.
    Ralph Waldo Emerson (1803–1882)