Properties
- The spectrum of a unitary operator U lies on the unit circle. That is, for any complex number λ in the spectrum, one has |λ|=1. This can be seen as a consequence of the spectral theorem for normal operators. By the theorem, U is unitarily equivalent to multiplication by a Borel-measurable f on L²(μ), for some finite measure space (X, μ). Now U U* = I implies |f(x)|² = 1 μ-a.e. This shows that the essential range of f, therefore the spectrum of U, lies on the unit circle.
Read more about this topic: Unitary Operator
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
Related Subjects
Related Phrases
Related Words