Finite Sums of Unit Fractions
Any positive rational number can be written as the sum of unit fractions, in multiple ways. For example,
The ancient Egyptians used sums of distinct unit fractions in their notation for more general rational numbers, and so such sums are often called Egyptian fractions. There is still interest today in analyzing the methods used by the ancients to choose among the possible representations for a fractional number, and to calculate with such representations. The topic of Egyptian fractions has also seen interest in modern number theory; for instance, the Erdős–Graham conjecture and the Erdős–Straus conjecture concern sums of unit fractions, as does the definition of Ore's harmonic numbers.
In geometric group theory, triangle groups are classified into Euclidean, spherical, and hyperbolic cases according to whether an associated sum of unit fractions is equal to one, greater than one, or less than one respectively.
Read more about this topic: Unit Fraction
Famous quotes containing the words finite, sums and/or unit:
“Sisters define their rivalry in terms of competition for the gold cup of parental love. It is never perceived as a cup which runneth over, rather a finite vessel from which the more one sister drinks, the less is left for the others.”
—Elizabeth Fishel (20th century)
“If God lived on earth, people would break his windows.”
—Jewish proverb, quoted in Claud Cockburn, Cockburn Sums Up, epigraph (1981)
“During the Suffragette revolt of 1913 I ... [urged] that what was needed was not the vote, but a constitutional amendment enacting that all representative bodies shall consist of women and men in equal numbers, whether elected or nominated or coopted or registered or picked up in the street like a coroners jury. In the case of elected bodies the only way of effecting this is by the Coupled Vote. The representative unit must not be a man or a woman but a man and a woman.”
—George Bernard Shaw (18561950)