Definition For Functions On Metric Spaces
Given metric spaces (X, d1) and (Y, d2), a function f : X → Y is called uniformly continuous if for every real number ε > 0 there exists δ > 0 such that for every x, y ∈ X with d1(x, y) < δ, we have that d2(f(x), f(y)) < ε.
If X and Y are subsets of the real numbers, d1 and d2 can be the standard Euclidean norm, || · ||, yielding the definition: for all ε > 0 there exists a δ > 0 such that for all x, y ∈ X, |x − y| < δ implies |f(x) − f(y)| < ε.
The difference between being uniformly continuous, and simply being continuous at every point, is that in uniform continuity the value of δ depends only on ε and not on the point in the domain.
Read more about this topic: Uniform Continuity
Famous quotes containing the words definition, functions and/or spaces:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Those things which now most engage the attention of men, as politics and the daily routine, are, it is true, vital functions of human society, but should be unconsciously performed, like the corresponding functions of the physical body.”
—Henry David Thoreau (18171862)
“through the spaces of the dark
Midnight shakes the memory
As a madman shakes a dead geranium.”
—T.S. (Thomas Stearns)