Uniform Continuity - Definition For Functions On Metric Spaces

Definition For Functions On Metric Spaces

Given metric spaces (X, d1) and (Y, d2), a function f : XY is called uniformly continuous if for every real number ε > 0 there exists δ > 0 such that for every x, yX with d1(x, y) < δ, we have that d2(f(x), f(y)) < ε.

If X and Y are subsets of the real numbers, d1 and d2 can be the standard Euclidean norm, || · ||, yielding the definition: for all ε > 0 there exists a δ > 0 such that for all x, yX, |xy| < δ implies |f(x) − f(y)| < ε.

The difference between being uniformly continuous, and simply being continuous at every point, is that in uniform continuity the value of δ depends only on ε and not on the point in the domain.

Read more about this topic:  Uniform Continuity

Famous quotes containing the words definition, functions and/or spaces:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    Empirical science is apt to cloud the sight, and, by the very knowledge of functions and processes, to bereave the student of the manly contemplation of the whole.
    Ralph Waldo Emerson (1803–1882)

    Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,—these are some of our astronomers.
    Henry David Thoreau (1817–1862)