Definition For Functions On Metric Spaces
Given metric spaces (X, d1) and (Y, d2), a function f : X → Y is called uniformly continuous if for every real number ε > 0 there exists δ > 0 such that for every x, y ∈ X with d1(x, y) < δ, we have that d2(f(x), f(y)) < ε.
If X and Y are subsets of the real numbers, d1 and d2 can be the standard Euclidean norm, || · ||, yielding the definition: for all ε > 0 there exists a δ > 0 such that for all x, y ∈ X, |x − y| < δ implies |f(x) − f(y)| < ε.
The difference between being uniformly continuous, and simply being continuous at every point, is that in uniform continuity the value of δ depends only on ε and not on the point in the domain.
Read more about this topic: Uniform Continuity
Famous quotes containing the words definition, functions and/or spaces:
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“The mind is a finer body, and resumes its functions of feeding, digesting, absorbing, excluding, and generating, in a new and ethereal element. Here, in the brain, is all the process of alimentation repeated, in the acquiring, comparing, digesting, and assimilating of experience. Here again is the mystery of generation repeated.”
—Ralph Waldo Emerson (18031882)
“Le silence éternel de ces espaces infinis meffraie. The eternal silence of these infinite spaces frightens me.”
—Blaise Pascal (16231662)