Uniform Continuity - Definition For Functions On Metric Spaces

Definition For Functions On Metric Spaces

Given metric spaces (X, d1) and (Y, d2), a function f : XY is called uniformly continuous if for every real number ε > 0 there exists δ > 0 such that for every x, yX with d1(x, y) < δ, we have that d2(f(x), f(y)) < ε.

If X and Y are subsets of the real numbers, d1 and d2 can be the standard Euclidean norm, || · ||, yielding the definition: for all ε > 0 there exists a δ > 0 such that for all x, yX, |xy| < δ implies |f(x) − f(y)| < ε.

The difference between being uniformly continuous, and simply being continuous at every point, is that in uniform continuity the value of δ depends only on ε and not on the point in the domain.

Read more about this topic:  Uniform Continuity

Famous quotes containing the words definition, functions and/or spaces:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.
    Cyril Connolly (1903–1974)

    When I consider the short duration of my life, swallowed up in the eternity before and after, the little space which I fill and even can see, engulfed in the infinite immensity of spaces of which I am ignorant and which know me not, I am frightened and am astonished at being here rather than there. For there is no reason why here rather than there, why now rather than then.
    Blaise Pascal (1623–1662)