Definition of Unification For First-order Logic
Let p and q be sentences in first-order logic.
- UNIFY(p,q) = U where subst(U,p) = subst(U,q)
Where subst(U,p) means the result of applying substitution U on the sentence p. Then U is called a unifier for p and q. The unification of p and q is the result of applying U to both of them.
Let L be a set of sentences, for example, L = {p,q}. A unifier U is called a most general unifier for L if, for all unifiers U' of L, there exists a substitution s such that applying s to the result of applying U to L gives the same result as applying U' to L:
- subst(U',L) = subst(s,subst(U,L)).
Read more about this topic: Unification (computer Science)
Famous quotes containing the words definition of, definition and/or logic:
“One definition of man is “an intelligence served by organs.””
—Ralph Waldo Emerson (1803–1882)
“I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.””
—Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)
“What avail all your scholarly accomplishments and learning, compared with wisdom and manhood? To omit his other behavior, see what a work this comparatively unread and unlettered man wrote within six weeks. Where is our professor of belles-lettres, or of logic and rhetoric, who can write so well?”
—Henry David Thoreau (1817–1862)