Unicity Distance

In cryptography, unicity distance is the length of an original ciphertext needed to break the cipher by reducing the number of possible spurious keys to zero in a brute force attack. That is, after trying every possible key, there should be just one decipherment that makes sense, i.e. expected amount of ciphertext needed to determine the key completely, assuming the underlying message has redundancy.

Consider an attack on the ciphertext string "WNAIW" encrypted using a Vigenère cipher with a five letter key. Conceivably, this string could be deciphered into any other string — RIVER and WATER are both possibilities for certain keys. This is a general rule of cryptanalysis: with no additional information it is impossible to decode this message.

Of course, even in this case, only a certain number of five letter keys will result in English words. Trying all possible keys we will not only get RIVER and WATER, but SXOOS and KHDOP as well. The number of "working" keys will likely be very much smaller than the set of all possible keys. The problem is knowing which of these "working" keys is the right one; the rest are spurious.

Read more about Unicity Distance:  Relation With Key Size and Possible Plaintexts, Relation With Key Entropy and Plaintext Redundancy, Practical Application

Famous quotes containing the word distance:

    Like the water, the Walden ice, seen near at hand, has a green tint, but at a distance is beautifully blue, and you can easily tell it from the white ice of the river, or the merely greenish ice of some ponds, a quarter of a mile off.
    Henry David Thoreau (1817–1862)