Uncertainty Principle - History

History

Werner Heisenberg formulated the Uncertainty Principle at Niels Bohr's institute in Copenhagen, while working on the mathematical foundations of quantum mechanics.

In 1925, following pioneering work with Hendrik Kramers, Heisenberg developed matrix mechanics, which replaced the ad-hoc old quantum theory with modern quantum mechanics. The central assumption was that the classical concept of motion does not fit at the quantum level, and that electrons in an atom do not travel on sharply defined orbits. Rather, the motion is smeared out in a strange way: the Fourier transform of time only involve those frequencies that could be seen in quantum jumps.

Heisenberg's paper did not admit any unobservable quantities like the exact position of the electron in an orbit at any time; he only allowed the theorist to talk about the Fourier components of the motion. Since the Fourier components were not defined at the classical frequencies, they could not be used to construct an exact trajectory, so that the formalism could not answer certain overly precise questions about where the electron was or how fast it was going.

In March 1926, working in Bohr's institute, Heisenberg realized that the non-commutativity implies the uncertainty principle. This implication provided a clear physical interpretation for the non-commutativity, and it laid the foundation for what became known as the Copenhagen interpretation of quantum mechanics. Heisenberg showed that the commutation relation implies an uncertainty, or in Bohr's language a complementarity. Any two variables that do not commute cannot be measured simultaneously—the more precisely one is known, the less precisely the other can be known. Heisenberg wrote:

It can be expressed in its simplest form as follows: One can never know with perfect accuracy both of those two important factors which determine the movement of one of the smallest particles—its position and its velocity. It is impossible to determine accurately both the position and the direction and speed of a particle at the same instant.

In his celebrated 1927 paper, "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik" ("On the Perceptual Content of Quantum Theoretical Kinematics and Mechanics"), Heisenberg established this expression as the minimum amount of unavoidable momentum disturbance caused by any position measurement, but he did not give a precise definition for the uncertainties Δx and Δp. Instead, he gave some plausible estimates in each case separately. In his Chicago lecture he refined his principle:

Kennard in 1927 first proved the modern inequality:

where ħ = h/2π, and σx, σp are the standard deviations of position and momentum. Heisenberg only proved relation (2) for the special case of Gaussian states.

Read more about this topic:  Uncertainty Principle

Famous quotes containing the word history:

    Modern Western thought will pass into history and be incorporated in it, will have its influence and its place, just as our body will pass into the composition of grass, of sheep, of cutlets, and of men. We do not like that kind of immortality, but what is to be done about it?
    Alexander Herzen (1812–1870)

    It’s nice to be a part of history but people should get it right. I may not be perfect, but I’m bloody close.
    John Lydon (formerly Johnny Rotten)

    No cause is left but the most ancient of all, the one, in fact, that from the beginning of our history has determined the very existence of politics, the cause of freedom versus tyranny.
    Hannah Arendt (1906–1975)