Core Collapse
The factor limiting this process is the amount of energy that is released through fusion, which is dependent on the binding energy that holds together these atomic nuclei. Each additional step produces progressively heavier nuclei, which release progressively less energy when fusing. In addition, from carbon-burning onwards, energy loss via neutrino production becomes significant, leading to a higher rate of reaction than would otherwise take place. This continues until nickel-56 is produced, which decays radioactively into cobalt-56 and then iron-56 over the course of a few months. As iron and nickel have the highest binding energy per nucleon of all the elements, energy cannot be produced at the core by fusion, and a nickel-iron core grows. This core is under huge gravitational pressure. As there is no fusion to further raise the star's temperature to support it against collapse, it is supported only by degeneracy pressure of electrons. In this state, matter is so dense that further compaction would require electrons to occupy the same energy states. However, this is forbidden for identical fermion particles, such as the electron – a phenomenon called the Pauli exclusion principle.
When the core's mass exceeds the Chandrasekhar limit of about 1.4 solar masses, degeneracy pressure can no longer support it, and catastrophic collapse ensues. The outer part of the core reaches velocities of up to 70,000 km/s (23% of the speed of light) as it collapses toward the center of the star. The rapidly shrinking core heats up, producing high-energy gamma rays that decompose iron nuclei into helium nuclei and free neutrons via photodisintegration. As the core's density increases, it becomes energetically favorable for electrons and protons to merge via inverse beta decay, producing neutrons and elementary particles called neutrinos. Because neutrinos rarely interact with normal matter, they can escape from the core, carrying away energy and further accelerating the collapse, which proceeds over a timescale of milliseconds. As the core detaches from the outer layers of the star, some of these neutrinos are absorbed by the star's outer layers, beginning the supernova explosion.
For Type II supernovae, the collapse is eventually halted by short-range repulsive neutron-neutron interactions, mediated by the strong force, as well as by degeneracy pressure of neutrons, at a density comparable to that of an atomic nucleus. Once collapse stops, the infalling matter rebounds, producing a shock wave that propagates outward. The energy from this shock dissociates heavy elements within the core. This reduces the energy of the shock, which can stall the explosion within the outer core.
The core collapse phase is so dense and energetic that only neutrinos are able to escape. As the protons and electrons combine to form neutrons by means of electron capture, an electron neutrino is produced. In a typical Type II supernova, the newly formed neutron core has an initial temperature of about 100 billion kelvin, 104 times the temperature of the sun's core. Much of this thermal energy must be shed for a stable neutron star to form, otherwise the neutrons would "boil away". This is accomplished by a further release of neutrinos. These 'thermal' neutrinos form as neutrino-antineutrino pairs of all flavors, and total several times the number of electron-capture neutrinos. The two neutrino production mechanisms convert the gravitational potential energy of the collapse into a ten second neutrino burst, releasing about 1046 joules (100 foes).
Through a process that is not clearly understood, about 1044 joules (1 foe) is reabsorbed by the stalled shock, producing an explosion. The neutrinos generated by a supernova were actually observed in the case of Supernova 1987A, leading astronomers to conclude that the core collapse picture is basically correct. The water-based Kamiokande II and IMB instruments detected antineutrinos of thermal origin, while the gallium-71-based Baksan instrument detected neutrinos (lepton number = 1) of either thermal or electron-capture origin.
When the progenitor star is below about 20 solar masses – depending on the strength of the explosion and the amount of material that falls back – the degenerate remnant of a core collapse is a neutron star. Above this mass, the remnant collapses to form a black hole. The theoretical limiting mass for this type of core collapse scenario is about 40–50 solar masses. Above that mass, a star is believed to collapse directly into a black hole without forming a supernova explosion, although uncertainties in models of supernova collapse make calculation of these limits uncertain.
Read more about this topic: Type II Supernova
Famous quotes containing the words core and/or collapse:
“For books are more than books, they are the life
The very heart and core of ages past,
The reason why men lived and worked and died,
The essence and quintessence of their lives.”
—Amy Lowell (18741925)
“The Roman world is in collapse but we do not bend our neck.”
—Jerome (c. 340420)