Description
The tuning fork was invented in 1711 by British musician John Shore, Sergeant Trumpeter and Lutenist to the court, who had parts specifically written for him by both George Frideric Handel and Henry Purcell.
The main reason for using the fork shape is that, unlike many other types of resonators, it produces a very pure tone, with most of the vibrational energy at the fundamental frequency, and little at the overtones (harmonics). The reason for this is that the frequency of the first overtone is about 52/22 = 25/4 = 6¼ times the fundamental (about 2½ octaves above it). By comparison, the first overtone of a vibrating string or metal bar is only one octave above the fundamental. So when the fork is struck, little of the energy goes into the overtone modes; they also die out correspondingly faster, leaving the fundamental. It is easier to tune other instruments with this pure tone.
Another reason for using the fork shape is that, when it vibrates in its principal mode, the handle vibrates up and down as the prongs move apart and together. There is a node (point of no vibration) at the base of each prong. The handle motion is small, allowing the fork to be held by the handle without damping the vibration, but it allows the handle to transmit the vibration to a resonator (like the hollow rectangular box often used), which amplifies the sound of the fork. Without the resonator (which may be as simple as a table top to which the handle is pressed), the sound is very faint. The reason for this is that the sound waves produced by each fork prong are 180° out of phase with the other, so at a distance from the fork they interfere and largely cancel each other out. If a sound absorbing sheet is slid in between the prongs of a vibrating fork, reducing the waves reaching the ear from one prong, the volume heard will actually increase, due to a reduction of this cancellation.
Although commercial tuning forks are normally tuned to the correct pitch at the factory, they can be retuned by filing material off the prongs. Filing the ends of the prongs raises the pitch, while filing the inside of the base of the prongs lowers it.
Currently, the most common tuning fork sounds the note of A = 440 Hz, because this is the standard concert pitch, which is used as tuning note by some orchestras, it being the pitch of the violin's second string, the first string of the viola, and an octave above the first string of the cello, all played open. Tuning forks used by orchestras between 1750 and 1820 mostly had a frequency of A = 423.5 Hz, although there were many forks and many slightly different pitches. Standard tuning forks are available that vibrate at all the musical pitches within the central octave of the piano, and other pitches. Well-known manufacturers of tuning forks include Ragg and John Walker, both of Sheffield, England.
The pitch of a tuning fork can vary slightly with weathering and temperature. A decrease in frequency of one vibration in 21,000 for each °F change is typical for a steel tuning fork. The standard temperature is now 68 °F (20 °C) but 59 °F (15 °C) is an older standard. The pitches of a musical instrument such as an organ are also subject to variation with temperature change.
Read more about this topic: Tuning Fork
Famous quotes containing the word description:
“The great object in life is Sensationto feel that we exist, even though in pain; it is this craving void which drives us to gaming, to battle, to travel, to intemperate but keenly felt pursuits of every description whose principal attraction is the agitation inseparable from their accomplishment.”
—George Gordon Noel Byron (17881824)
“Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.”
—Willard Van Orman Quine (b. 1908)
“I was here first introduced to Joe.... He was a good-looking Indian, twenty-four years old, apparently of unmixed blood, short and stout, with a broad face and reddish complexion, and eyes, methinks, narrower and more turned up at the outer corners than ours, answering to the description of his race. Besides his underclothing, he wore a red flannel shirt, woolen pants, and a black Kossuth hat, the ordinary dress of the lumberman, and, to a considerable extent, of the Penobscot Indian.”
—Henry David Thoreau (18171862)