Tube Alloys - Plutonium

Plutonium

The breakthrough with plutonium was at the Cavendish Laboratory by Egon Bretscher and Norman Feather. They realized that a slow neutron reactor fuelled with uranium would theoretically produce substantial amounts of plutonium-239 as a by-product. This is because U-238 absorbs slow neutrons and forms a new isotope U-239. The new isotope's nucleus rapidly emits an electron through beta decay producing a new element with a mass of 239 and an atomic number of 93. This element's nucleus then also emits an electron and becomes a new element of mass 239 but with an atomic number 94 and a much greater half-life. Bretscher and Feather showed theoretically feasible grounds that element 94 would be readily 'fissionable' by both slow and fast neutrons, and had the added advantage of being chemically different from uranium, and could easily be separated from it.

This new development was also confirmed in independent work by Edwin M. McMillan and Philip Abelson at Berkeley Radiation Laboratory also in 1940. Nicholas Kemmer of the Cambridge team proposed the names neptunium for the new element 93 and plutonium for 94 by analogy with the outer planets Neptune and Pluto beyond Uranus (uranium being element 92). The Americans fortuitously suggested the same names. The production and identification of the first sample of plutonium in 1941 is generally credited to Glenn Seaborg, using a cyclotron rather than a reactor.

Read more about this topic:  Tube Alloys