Related Polyhedra
The truncated octahedron is one of a family of uniform polyhedra related to the cube and regular octahedron.
{4,3} | t0,1{4,3} | t1{4,3} | t0,1{3,4} | {3,4} | t0,2{4,3} | t0,1,2{4,3} | s{4,3} | h0{4,3} | h1,2{4,3} |
---|---|---|---|---|---|---|---|---|---|
It also exists as the omnitruncate of the tetrahedron family:
{3,3} | t0,1{3,3} | t1{3,3} | t1,2{3,3} | t2{3,3} | t0,2{3,3} | t0,1,2{3,3} | s{3,3} |
---|---|---|---|---|---|---|---|
Symmetry | Spherical | planar | Hyperbolic | |||||
---|---|---|---|---|---|---|---|---|
*232 D3h |
*332 Td |
*432 Oh |
*532 Ih |
*632 P6m |
*732 |
*832 |
*∞32 |
|
Order | 12 | 24 | 48 | 120 | ∞ | |||
Omnitruncated figure |
4.6.4 |
4.6.6 |
4.6.8 |
4.6.10 |
4.6.12 |
4.6.14 |
4.6.16 |
4.6.∞ |
Coxeter Schläfli |
t0,1,2{2,3} |
t0,1,2{3,3} |
t0,1,2{4,3} |
t0,1,2{5,3} |
t0,1,2{6,3} |
t0,1,2{7,3} |
t0,1,2{8,3} |
t0,1,2{∞,3} |
Omnitruncated duals |
V4.6.4 |
V4.6.6 |
V4.6.8 |
V4.6.10 |
V4.6.12 |
V4.6.14 |
V4.6.16 | V4.6.∞ |
Coxeter |
This polyhedron can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram . For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedra), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.
Symmetry | Spherical | Planar | Hyperbolic... | |||||
---|---|---|---|---|---|---|---|---|
*232 D3h |
*332 Td |
*432 Oh |
*532 Ih |
*632 P6m |
*732 |
*832 ... |
*∞32 |
|
Order | 12 | 24 | 48 | 120 | ∞ | |||
Truncated figures |
2.6.6 |
3.6.6 |
4.6.6 |
5.6.6 |
6.6.6 |
7.6.6 |
8.6.6 |
3.4.∞.4 |
Coxeter Schläfli |
t0,1{3,2} |
t0,1{3,3} |
t0,1{3,4} |
t0,1{3,5} |
t0,1{3,6} |
t0,1{3,7} |
t0,1{3,8} |
t0,1{3,∞} |
n-kis figures |
V2.6.6 |
V3.6.6 |
V4.6.6 |
V5.6.6 |
V6.6.6 |
V7.6.6 |
||
Coxeter |
Read more about this topic: Truncated Octahedron
Famous quotes containing the word related:
“Perhaps it is nothingness which is real and our dream which is non-existent, but then we feel think that these musical phrases, and the notions related to the dream, are nothing too. We will die, but our hostages are the divine captives who will follow our chance. And death with them is somewhat less bitter, less inglorious, perhaps less probable.”
—Marcel Proust (18711922)