Trilinear Coordinates - Examples

Examples

The incenter has trilinears 1 : 1 : 1; that is, the (directed) distances from the incenter to the sidelines BC, CA, AB of a triangle ABC are proportional to the actual distances, which are the ordered triple (r, r, r), where r is the inradius of triangle ABC. Note that the notation x:y:z using colons distinguishes trilinears from actual directed distances, (kx, ky, kz), which is the usual notation for an ordered triple, and which may be obtained from x : y : z using the number

where a, b, c are the respective sidelengths BC, CA, AB, and σ = area of ABC. ("Comma notation" for trilinears should be avoided, because the notation (x, y, z), which means an ordered triple, does not allow, for example, (x, y, z) = (2x, 2y, 2z), whereas the "colon notation" does allow x : y : z = 2x : 2y : 2z.)

  • A = 1 : 0 : 0
  • B = 0 : 1 : 0
  • C = 0 : 0 : 1
  • incenter = 1 : 1 : 1
  • centroid = bc : ca : ab = 1/a : 1/b : 1/c = csc A : csc B : csc C.
  • circumcenter = cos A : cos B : cos C.
  • orthocenter = sec A : sec B : sec C.
  • nine-point center = cos(BC) : cos(CA) : cos(AB).
  • symmedian point = a : b : c = sin A : sin B : sin C.
  • A-excenter = −1 : 1 : 1
  • B-excenter = 1 : −1 : 1
  • C-excenter = 1 : 1 : −1.

Note that, in general, the incenter is not the same as the centroid; the centroid has barycentric coordinates 1 : 1 : 1 (these being proportional to actual signed areas of the triangles BGC, CGA, AGB, where G = centroid.)

Read more about this topic:  Trilinear Coordinates

Famous quotes containing the word examples:

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)