Related Polyhedra and Tilings
This polyhedron is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and Coxeter group symmetry.
Symmetry *n32 |
Spherical | Euclidean | Hyperbolic... | |||||
---|---|---|---|---|---|---|---|---|
*232 D3h |
*332 Td |
*432 Oh |
*532 Ih |
*632 P6m |
*732 |
*832 ... |
*∞32 |
|
Truncated figures |
3.4.4 |
3.6.6 |
3.8.8 |
3.10.10 |
3.12.12 |
3.14.14 |
3.16.16 |
3.∞.∞ |
Coxeter Schläfli |
t0,1{2,3} |
t0,1{3,3} |
t0,1{4,3} |
t0,1{5,3} |
t0,1{6,3} |
t0,1{7,3} |
t0,1{8,3} |
t0,1{∞,3} |
Uniform dual figures | ||||||||
Triakis figures |
V3.4.4 |
V3.6.6 |
V3.8.8 |
V3.10.10 |
V3.12.12 |
V3.14.14 |
V3.16.16 |
V3.∞.∞ |
Coxeter |
This polyhedron is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.
This polyhedron is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.
Symmetry *n32 |
Spherical | Planar | Hyperbolic... | |||||
---|---|---|---|---|---|---|---|---|
*232 D3h |
*332 Td |
*432 Oh |
*532 Ih |
*632 P6m |
*732 |
*832 ... |
*∞32 |
|
Expanded figure |
3.4.2.4 |
3.4.3.4 |
3.4.4.4 |
3.4.5.4 |
3.4.6.4 |
3.4.7.4 |
3.4.8.4 |
3.4.∞.4 |
Coxeter Schläfli |
t0,2{2,3} |
t0,2{3,3} |
t0,2{4,3} |
t0,2{5,3} |
t0,2{6,3} |
t0,2{7,3} |
t0,2{8,3} |
t0,2{∞,3} |
Deltoidal figure | V3.4.2.4 |
V3.4.3.4 |
V3.4.4.4 |
V3.4.5.4 |
V3.4.6.4 |
V3.4.7.4 |
V3.4.8.4 |
V3.4.∞.4 |
Coxeter |
Read more about this topic: Triangular Prism
Famous quotes containing the word related:
“The custard is setting; meanwhile
I not only have my own history to worry about
But am forced to fret over insufficient details related to large
Unfinished concepts that can never bring themselves to the point
Of being, with or without my help, if any were forthcoming.”
—John Ashbery (b. 1927)