As A Semiregular (or Uniform) Polyhedron
A right triangular prism is semiregular or, more generally, a uniform polyhedron if the base faces are equilateral triangles, and the other three faces are squares. It can be seen as a truncated trigonal hosohedron, represented by Schläfli symbol t{2,3}. Alternately it can be seen as the Cartesian product of a triangle and a line segment, and represented by the product {3}x{}. The dual of a triangular prism is a triangular bipyramid.
The symmetry group of a right 3-sided prism with triangular base is D3h of order 12. The rotation group is D3 of order 6. The symmetry group does not contain inversion.
Read more about this topic: Triangular Prism
Related Subjects
Related Phrases
Related Words