Special Properties
A matrix which is simultaneously triangular and normal is also diagonal. This can be seen by looking at the diagonal entries of A*A and AA*, where A is a normal, triangular matrix.
The transpose of an upper triangular matrix is a lower triangular matrix and vice versa.
The determinant of a triangular matrix equals the product of the diagonal entries. Since for any triangular matrix A the matrix, whose determinant is the characteristic polynomial of A, is also triangular, the diagonal entries of A in fact give the multiset of eigenvalues of A (an eigenvalue with multiplicity m occurs exactly m times as diagonal entry).
Read more about this topic: Triangular Matrix
Famous quotes containing the words special and/or properties:
“With a generous endowment of motherhood provided by legislation, with all laws against voluntary motherhood and education in its methods repealed, with the feminist ideal of education accepted in home and school, and with all special barriers removed in every field of human activity, there is no reason why woman should not become almost a human thing. It will be time enough then to consider whether she has a soul.”
—Crystal Eastman (18811928)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)