Transport Layer - Analysis

Analysis

The transport layer is responsible for delivering data to the appropriate application process on the host computers. This involves statistical multiplexing of data from different application processes, i.e. forming data packets, and adding source and destination port numbers in the header of each transport-layer data packet. Together with the source and destination IP address, the port numbers constitutes a network socket, i.e. an identification address of the process-to-process communication. In the OSI model, this function is supported by the session layer.

Some transport-layer protocols, for example TCP, but not UDP, support virtual circuits, i.e. provide connection oriented communication over an underlying packet oriented datagram network. A byte-stream is delivered while hiding the packet mode communication for the application processes. This involves connection establishment, dividing of the data stream into packets called segments, segment numbering and reordering of out-of order data.

Finally, some transport-layer protocols, for example TCP, but not UDP, provide end-to-end reliable communication, i.e. error recovery by means of error detecting code and automatic repeat request (ARQ) protocol. The ARQ protocol also provides flow control, which may be combined with congestion avoidance.

UDP is a very simple protocol, and does not provide virtual circuits, nor reliable communication, delegating these functions to the application program. UDP packets are called datagrams, rather than segments.

TCP is used for many protocols, including HTTP web browsing and email transfer. UDP may be used for multicasting and broadcasting, since retransmissions are not possible to a large amount of hosts. UDP typically gives higher throughput and shorter latency, and is therefore often used for real-time multimedia communication where packet loss occasionally can be accepted, for example IP-TV and IP-telephony, and for online computer games.

The OSI model
7 Application layer
6 Presentation layer
5 Session layer
4 Transport layer
3 Network layer
2 Data link layer
  • LLC sublayer
  • MAC sublayer
1 Physical layer

In many non-IP-based networks, for example X.25, Frame Relay and ATM, the connection oriented communication is implemented at network layer or data link layer rather than the transport layer. In X.25, in telephone network modems and in wireless communication systems, reliable node-to-node communication is implemented at lower protocol layers.

The OSI model defines five classes of transport protocols: TP0, providing the least error recovery, to TP4, which is designed for less reliable networks.

Read more about this topic:  Transport Layer

Famous quotes containing the word analysis:

    Analysis as an instrument of enlightenment and civilization is good, in so far as it shatters absurd convictions, acts as a solvent upon natural prejudices, and undermines authority; good, in other words, in that it sets free, refines, humanizes, makes slaves ripe for freedom. But it is bad, very bad, in so far as it stands in the way of action, cannot shape the vital forces, maims life at its roots. Analysis can be a very unappetizing affair, as much so as death.
    Thomas Mann (1875–1955)