Transitive Set - Transitive Models of Set Theory

Transitive Models of Set Theory

Transitive classes are often used for construction of interpretations of set theory in itself, usually called inner models. The reason is that properties defined by bounded formulas are absolute for transitive classes.

A transitive set (or class) that is a model of a formal system of set theory is called a transitive model of the system. Transitivity is an important factor in determining the absoluteness of formulas.

In the superstructure approach to non-standard analysis, the non-standard universes satisfy strong transitivity, see (Goldblatt, 1998, p.161).

Read more about this topic:  Transitive Set

Famous quotes containing the words models, set and/or theory:

    French rhetorical models are too narrow for the English tradition. Most pernicious of French imports is the notion that there is no person behind a text. Is there anything more affected, aggressive, and relentlessly concrete than a Parisan intellectual behind his/her turgid text? The Parisian is a provincial when he pretends to speak for the universe.
    Camille Paglia (b. 1947)

    Early, as well as late,
    Rise with the sun, and set in the same bowers;
    Henry Vaughan (1622–1695)

    It makes no sense to say what the objects of a theory are,
    beyond saying how to interpret or reinterpret that theory in another.
    Willard Van Orman Quine (b. 1908)